T=-16t^2+105

Simple and best practice solution for T=-16t^2+105 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for T=-16t^2+105 equation:



=-16T^2+105
We move all terms to the left:
-(-16T^2+105)=0
We get rid of parentheses
16T^2-105=0
a = 16; b = 0; c = -105;
Δ = b2-4ac
Δ = 02-4·16·(-105)
Δ = 6720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6720}=\sqrt{64*105}=\sqrt{64}*\sqrt{105}=8\sqrt{105}$
$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{105}}{2*16}=\frac{0-8\sqrt{105}}{32} =-\frac{8\sqrt{105}}{32} =-\frac{\sqrt{105}}{4} $
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{105}}{2*16}=\frac{0+8\sqrt{105}}{32} =\frac{8\sqrt{105}}{32} =\frac{\sqrt{105}}{4} $

See similar equations:

| -3p-1=29 | | 95-r=42 | | -125=n-58 | | 4x-6+4x-6+24=36 | | 5+x÷3=-25 | | -4x+10=5-8x | | 39-6x=120+26x | | W(x)=7x-22/4 | | 2-3p-1=29 | | 9/x-4=6 | | 2x-(-2-x)=2x-(4-2x) | | 6.7x=5.2+12.9= | | 3(x-7)+3=3(x-6) | | V=4/3πr | | 0.19x=0.9x+10 | | z/6.9=3 | | 12=3+2b | | 2x-(-2-x)=2x-(4-2x | | 7=+a/3=5 | | 25=2(x)+4 | | -3x+69=-43x+80 | | 2(x+1)+x=-2(x-1)+3(x-2) | | -2(7-y+4=-4) | | 5s+9=19 | | c) W=217 | | 9x+7-3x=14 | | 8(a-3)=-4(6-2a) | | 2.4x-14.3=2.5 | | -3(1+2r)-(r+1)=-10r | | x-10+x=8+2x-18* | | x+54.6+17.7=180 | | -6x-21=9×+6 |

Equations solver categories